skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Hu, Maokai"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. ABSTRACT Type Ia supernovae (SNe Ia) arise from the thermonuclear explosion in binary systems involving carbon–oxygen white dwarfs (WDs). The pathway of WDs acquiring mass may produce circumstellar material (CSM). Observing SNe Ia within a few hours to a few days after the explosion can provide insight into the nature of CSM relating to the progenitor systems. In this paper, we propose a CSM model to investigate the effect of ejecta−CSM interaction on the early-time multiband light curves of SNe Ia. By varying the mass-loss history of the progenitor system, we apply the ejecta−CSM interaction model to fit the optical and ultraviolet (UV) photometric data of eight SNe Ia with early excess. The photometric data of SNe Ia in our sample can be well matched by our CSM model except for the UV-band light curve of iPTF14atg, indicating its early excess may not be due to the ejecta−CSM interaction. Meanwhile, the CSM interaction can generate synchrotron radiation from relativistic electrons in the shocked gas, making radio observations a distinctive probe of CSM. The radio luminosity based on our models suggests that positive detection of the radio signal is only possible within a few days after the explosion at higher radio frequencies (e.g. ∼250 GHz); at lower frequencies (e.g. ∼1.5 GHz), the detection is difficult. These models lead us to conclude that a multimessenger approach that involves UV, optical, and radio observations of SNe Ia a few days past explosion is needed to address many of the outstanding questions concerning the progenitor systems of SNe Ia. 
    more » « less
  2. Abstract Observational signatures of the circumstellar material (CSM) around Type Ia supernovae (SNe Ia) provide a unique perspective on their progenitor systems. The pre-supernova evolution of the SN progenitors may naturally eject CSM in most of the popular scenarios of SN Ia explosions. In this study, we investigate the influence of dust scattering on the light curves and polarizations of SNe Ia. A Monte Carlo method is constructed to numerically solve the process of radiative transfer through the CSM. Three types of geometric distributions of the CSM are considered: spherical shell, axisymmetric disk, and axisymmetric shell. We show that both the distance of the dust from the SN and the geometric distribution of the dust affect the light curve and color evolutions of SN. We found that the geometric location of the hypothetical circumstellar dust may not be reliably constrained based on photometric data alone, even for the best observed cases such as SN 2006X and SN 2014J, due to the degeneracy of CSM parameters. Our model results show that a time sequence of broadband polarimetry with appropriate time coverage from a month to about one year after explosion can provide unambiguous limits on the presence of circumstellar dust around SNe Ia. 
    more » « less
  3. Abstract Dust associated with various stellar sources in galaxies at all cosmic epochs remains a controversial topic, particularly whether supernovae play an important role in dust production. We report evidence of dust formation in the cold, dense shell behind the ejecta–circumstellar medium (CSM) interaction in the Type Ia-CSM supernova (SN) 2018evt three years after the explosion, characterized by a rise in mid-infrared emission accompanied by an accelerated decline in the optical radiation of the SN. Such a dust-formation picture is also corroborated by the concurrent evolution of the profiles of the Hα emission line. Our model suggests enhanced CSM dust concentration at increasing distances from the SN as compared to what can be expected from the density profile of the mass loss from a steady stellar wind. By the time of the last mid-infrared observations at day +1,041, a total amount of 1.2 ± 0.2 × 10−2 Mof new dust has been formed by SN 2018evt, making SN 2018evt one of the most prolific dust factories among supernovae with evidence of dust formation. The unprecedented witness of the intense production procedure of dust may shed light on the perceptions of dust formation in cosmic history. 
    more » « less
  4. Photometry shown in Figure Extended Data 4 (a) of Wang, Lingzhi, et al. 2024, Nature Astronomy, https://doi.org/10.1038/s41550-024-02197-9.Phase is days since B-band maximum MJD 58352.BVgri-band photometry from 1-m network at Las Cumbres Observatory.SN2018evt_lcogt_lc.datBVgri-band photometry from 2.4-m LiJiang Telescope (LJT) and 60/90-cm XingLong Schmidt Telescope (XLST)SN2018evt_xlt_ljt_lc.datOptical and NIR spectra data shown in Figures Extended Data 2, 3, and Table Extended Data 2 of Wang, Lingzhi, et al. 2024, Nature Astronomy, NIR spectraSN2018evt_181224_spex.txt SN2018evt_190511_spex.txtSN2018evt_190617_spex.txtSN2018evt_200119_spex.txtSN2018evt_20190101_gnirs.txtSN2018evt_20190108_gnirs.txtSN2018evt_20190516_fire.datSN2018evt_20190712_fire.datOptical spectraOptical spectra observed with 2.4-m LiJiang Telescope (LJT)SN2018evt_190104_LJT_G3.datSN2018evt_190131_LJT_G3.datSN2018evt_190328_LJT_G3.datSN2018evt_190520_LJT_G3.datOptical spectra observed with 2.16-m XingLong Telescope (XLT)SN2018evt_20190208_2458551.3570_bao_bfosc.txtSN2018evt_20190220_2458563.3588_bao-bfosc.txtSN2018evt_20190413_2458587.2169_bao-bfosc.txtOptical spectra observed with 3.6-m ESO New Technology Telescope (NTT)SN2018evt_20180812_NTT_Gr13_Free_slit1.0_58346_1_e.asciSN2018evt_20190425_NTT_Gr13_Free_slit1.0_58599_1_e.asciSN2018evt_20190512_NTT_Gr13_Free_slit1.0_58616_1_e.asciSN2018evt_20190608_NTT_Gr13_Free_slit1.0_58643_1_e.asciSN2018evt_20200218_NTT_Gr13_Free_slit1.0_58899_1_e.asciSN2018evt_20200322_NTT_Gr13_Free_slit1.0_58931_1_e.asciOptical spectrum observed with WiFes mounted on 2.3-m telescope at the Siding Spring Observatory (WiFeS)SN2018evt_20190624_ANU_Wifes.datOptical spectrum observed with 2.0-m Faulkes Telescope North (FTN)/FLOYDSSN2018evt_20191224_FTN-floyds-redblu_145742.306.asciiSN2018evt_20200119_FTN-floyds-redblu_133856.906.asciiSN2018evt_20200203_FTN-floyds-redblu_125905.990.ascii 
    more » « less
  5. The third Antarctic Survey Telescope array instrument at Dome A in Antarctica, the AST3-3 telescope, has been in commissioning from March 2021. We deployed AST3-3 at the Yaoan astronomical station in Yunnan Province for an automatic time-domain survey and follow-up observations with an optimised observation and protection system. The telescope system of AST3-3 is similar to that of AST3-1 and AST3-2, except that it is equipped with a 14 K × 10 K QHY411 CMOS camera. AST3-3 has a field of view of 1.65∘×1.23∘ and is currently using the g band filter. During commissioning at Yaoan, AST3-3 aims to conduct an extragalactic transient survey, coupled with prompt follow-ups of opportunity targets. In this paper, we present the architecture of the AST3-3 automatic observation system. We demonstrate the data processing of observations by representatives SN 2022eyw and GRB 210420B. 
    more » « less
  6. null (Ed.)